
Ankit Anand, Akshay Kurapaty, Rohit Kata, Hemanth Devavarapu, Matthew A. Lanham

Purdue University Krannert School of Management

anand57@purdue.edu; akurapat@purdue.edu; kata@purdue.edu; hdevavar@purdue.edu; lanhamm@purdue.edu

All the machine learning models are majorly classified into supervised or

unsupervised learning. Clustering, which falls under the unsupervised learning

umbrella is a computationally expensive operation, as most algorithms require

multiple data scans. Clustering gigabytes of data will eventually become the norm.

In light of these events, there is a need to develop optimal algorithms, that process

the data faster and provide more accurate clusters. We developed a BirchR

algorithm that solves this problem by creating fewer representative datapoints that

are significant to making a cluster decision. Since R is open source and a core

language for machine learning, we developed an R package of our algorithm that

can be shared with the open source analytics community. To date there is no

current active R package available on CRAN that performs Birch Clustering.

By publishing the BirchR package in CRAN, we are able to provide the

functionality of BIRCH clustering to a wider audience. The functionalities

provided by our package closely matches BIRCH clustering function in Python in

speed and accuracy. Additionally, we have provided the user with a choice

between obtaining cluster features or have an option to choose cluster via either

kmeans or hclust (hierarchical clustering) to obtain clusters as the output after

obtaining the cluster features.

BirchR: An R Package for BIRCH Clustering

Abstract

Conclusions

From Data Mining and Predictive Analytics Textbook by Daniel T. Larose and

Chantal D. Larose, we obtained deeper understanding of the Birch Clustering,

which led us to create an algorithm to tackle the problem in manageable chunks.

From the R packages book by Hadley Wickham, we obtained detailed steps and

pre requisites to publish an R package in CRAN. The sci-kit learn library in

Python has an existing BIRCH clustering function that can be accessed using

sklearn.cluster.Birch. We contrasted the results obtained with the python package

to ascertain our results. To date there is no existing implementation of Birch on

CRAN.

Literature Review

Our BirchR package handles very large data sets with a time complexity and

space efficiency that is superior to other algorithms. Previous clustering algorithms

performed less effectively over very large databases and did not adequately

consider the case wherein a data-set was too large to fit in main memory.

We thank Professor Matthew Lanham for guidance on this project.

Acknowledgements

On contrasting our algorithm with k-means, the results are clearly visible. The

processing times between the two are vastly different.

The performance, though slightly slower than the functionality in python BIRCH

library is comparable to it in speed and accuracy. We aim to further improve the

performance in future versions.

Introduction

Methodology Results

BIRCH is local, in that

each clustering decision is

made without scanning all

data points and currently

existing clusters. It makes

full use of available

memory to derive the finest

possible sub-clusters while

minimizing I/O costs. It is

also an incremental method

that does not require the

whole data set in advance.

Thus, this package provides a way to perform clustering over large data sets

without having to worry too much about memory and computational constraints.

Research question:

Can we develop an more efficient implementation of the Birch clustering algorithm

and create an R package to be shared with the CRAN R community?

CF-Tree: CF stands for Clustering Feature; each clustering feature helps to create

representative data point based on the radius condition.

How does the CF reduces data points?

Below is a graph that illustrates the functionality of clustering features, circular dots

on the graph indicate clustering features, where as other dots indicate data points.

PHASE 1: BUILDING THE CF TREE

1. For each given record, BIRCH compares the location of that record with the

location of each CF in the root node, using either the linear sum or the mean of

the CF. BIRCH passes the incoming record to the root node CF closest to the

incoming record.

2. The record then descends down to the non-leaf child nodes of the root node CF

selected in step 1. BIRCH compares the location of the record with the location

of each non-leaf CF. BIRCH passes the incoming record to the non-leaf node CF

closest to the incoming record.

3. The record then descends down to the leaf child nodes of the non-leaf node CF

selected in step 2. BIRCH compares the location of the record with the location

of each leaf. BIRCH tentatively passes the incoming record to the leaf closest to

the incoming record.

4. Perform one of (a) or (b):

a. If the radius (defined below) of the chosen leaf including the new record does

not exceed the Threshold T, then the incoming record is assigned to that leaf.

The leaf and all of its parent CFs are updated to account for the new data point.

b. If the radius of the chosen leaf including the new record does exceed the

Threshold T, then a new leaf is formed, consisting of the incoming record only.

The parent CFs are updated to account for the new data point.

PHASE 2: CLUSTERING THE SUB-CLUSTERS

Once the CF tree is built, any existing clustering algorithm may be applied to the

sub-clusters (the CF leaf nodes), to combine these sub-clusters into clusters.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

T
im

e(
in

 s
ec

)

BirchR vs Python Birch library

BirchR Python


